14 research outputs found

    Dynamical uncertainty propagation with noisy quantum parameters

    Full text link
    Many quantum technologies rely on high-precision dynamics, which raises the question of how these are influenced by the experimental uncertainties that are always present in real-life settings. A standard approach in the literature to assess this is Monte Carlo sampling, which suffers from two major drawbacks. First, it is computationally expensive. Second, it does not reveal the effect that each individual uncertainty parameter has on the state of the system. In this work, we evade both these drawbacks by incorporating propagation of uncertainty directly into simulations of quantum dynamics, thereby obtaining a method that is faster than Monte Carlo simulations and directly provides information on how each uncertainty parameter influence the system dynamics. Additionally, we compare our method to experimental results obtained using the IBM quantum computers.Comment: 10 pages, 3 figure

    Robust Control Performance for Open Quantum Systems

    Get PDF
    The robustness of quantum control in the presence of uncertainties is important for practical applications but their quantum nature poses many challenges for traditional robust control. In addition to uncertainties in the system and control Hamiltonians and initial state preparation, there is uncertainty about interactions with the environment leading to decoherence. This paper investigates the robust performance of control schemes for open quantum systems subject to such uncertainties. A general formalism is developed, where performance is measured based on the transmission of a dynamic perturbation or initial state preparation error to a final density operator error. This formulation makes it possible to apply tools from classical robust control, especially structured singular value analysis, to assess robust performance of controlled, open quantum systems. However, there are additional difficulties that must be overcome, especially at low frequency (s≈0s\approx0). For example, at s=0s=0, the Bloch equations for the density operator are singular, and this causes lack of continuity of the structured singular value. We address this issue by analyzing the dynamics on invariant subspaces and defining a pseudo-inverse that enables us to formulate a specialized version of the matrix inversion lemma. The concepts are demonstrated with an example of two qubits in a leaky cavity under laser driving fields and spontaneous emission. In addition, a new performance index is introduced for this system. Instead of the tracking or transfer fidelity error, performance is measured by the steady-steady entanglement generated, which is quantified by a non-linear function of the system state called concurrence. Simulations show that there is no conflict between this performance index, its log-sensitivity and stability margin under decoherence, unlike for conventional control problems [...].Comment: 12 pages, 5 figures, 2 table

    Sample-efficient Model-based Reinforcement Learning for Quantum Control

    Full text link
    We propose a model-based reinforcement learning (RL) approach for noisy time-dependent gate optimization with improved sample complexity over model-free RL. Sample complexity is the number of controller interactions with the physical system. Leveraging an inductive bias, inspired by recent advances in neural ordinary differential equations (ODEs), we use an auto-differentiable ODE parametrised by a learnable Hamiltonian ansatz to represent the model approximating the environment whose time-dependent part, including the control, is fully known. Control alongside Hamiltonian learning of continuous time-independent parameters is addressed through interactions with the system. We demonstrate an order of magnitude advantage in the sample complexity of our method over standard model-free RL in preparing some standard unitary gates with closed and open system dynamics, in realistic numerical experiments incorporating single shot measurements, arbitrary Hilbert space truncations and uncertainty in Hamiltonian parameters. Also, the learned Hamiltonian can be leveraged by existing control methods like GRAPE for further gradient-based optimization with the controllers found by RL as initializations. Our algorithm that we apply on nitrogen vacancy (NV) centers and transmons in this paper is well suited for controlling partially characterised one and two qubit systems.Comment: 14+6 pages, 6+4 figures, comments welcome

    Applying classical control techniques to quantum systems: entanglement versus stability margin and other limitations

    Get PDF
    Development of robust quantum control has been challenging and there are numerous obstacles to applying classical robust control to quantum system including bilinearity, marginal stability, state preparation errors, nonlinear figures of merit. The requirement of marginal stability, while not satisfied for closed quantum systems, can be satisfied for open quantum systems where Lindbladian behavior leads to non-unitary evolution, and allows for nonzero classical stability margins, but it remains difficult to extract physical insight when classical robust control tools are applied to these systems. We consider a straightforward example of the entanglement between two qubits dissipatively coupled to a lossy cavity and analyze it using the classical stability margin and structured perturbations. We attempt, where possible, to extract physical insight from these analyses. Our aim is to highlight where classical robust control can assist in the analysis of quantum systems and identify areas where more work needs to be done to develop specific methods for quantum robust control

    Statistically characterizing robustness and fidelity of quantum controls and quantum control algorithms

    Get PDF
    Robustness of quantum operations or controls is important to build reliable quantum devices. The robustness-infidelity measure (RIM_p) is introduced to statistically quantify in a single measure the robustness and fidelity of a controller as the p-th order Wasserstein distance between the fidelity distribution of the controller under any uncertainty and an ideal fidelity distribution. The RIM_p is the p-th root of the p-th raw moment of the infidelity distribution. Using a metrization argument, we justify why RIM_1 (the average infidelity) is a good practical robustness measure. Based on the RIM_p, an algorithmic robustness-infidelity measure (ARIM) is developed to quantify the expected robustness and fidelity of controllers found by a control algorithm. The utility of the RIM and ARIM is demonstrated on energy landscape controllers of spin-1/2 networks subject to Hamiltonian uncertainty. The robustness and fidelity of individual controllers as well as the expected robustness and fidelity of controllers found by different popular quantum control algorithms are characterized. For algorithm comparisons, stochastic and non-stochastic optimization objectives are considered. Although high fidelity and robustness are often conflicting objectives, some high-fidelity, robust controllers can usually be found, irrespective of the choice of the quantum control algorithm. However, for noisy or stochastic optimization objectives, adaptive sequential decision-making approaches, such as reinforcement learning, have a cost advantage compared to standard control algorithms and, in contrast, the high infidelities obtained are more consistent with high RIM values for low noise levels

    Sample-efficient model-based reinforcement learning for quantum control

    Get PDF
    We propose a model-based reinforcement learning (RL) approach for noisy time-dependent gate optimization with reduced sample complexity over model-free RL. Sample complexity is defined as the number of controller interactions with the physical system. Leveraging an inductive bias, inspired by recent advances in neural ordinary differential equations (ODEs), we use an autodifferentiable ODE, parametrized by a learnable Hamiltonian ansatz, to represent the model approximating the environment, whose time-dependent part, including the control, is fully known. Control alongside Hamiltonian learning of continuous time-independent parameters is addressed through interactions with the system. We demonstrate an order of magnitude advantage in sample complexity of our method over standard model-free RL in preparing some standard unitary gates with closed and open system dynamics, in realistic computational experiments incorporating single-shot measurements, arbitrary Hilbert space truncations, and uncertainty in Hamiltonian parameters. Also, the learned Hamiltonian can be leveraged by existing control methods like GRAPE (gradient ascent pulse engineering) for further gradient-based optimization with the controllers found by RL as initializations. Our algorithm, which we apply to nitrogen vacancy (NV) centers and transmons, is well suited for controlling partially characterized one- and two-qubit systems

    Sample-efficient model-based reinforcement learning for quantum control

    Get PDF
    We propose a model-based reinforcement learning (RL) approach for noisy time-dependent gate optimization with improved sample complexity over model-free RL. Sample complexity is the number of controller interactions with the physical system. Leveraging an inductive bias, inspired by recent advances in neural ordinary differential equations (ODEs), we use an auto-differentiable ODE parametrised by a learnable Hamiltonian ansatz to represent the model approximating the environment whose time-dependent part, including the control, is fully known. Control alongside Hamiltonian learning of continuous time-independent parameters is addressed through interactions with the system. We demonstrate an order of magnitude advantage in the sample complexity of our method over standard model-free RL in preparing some standard unitary gates with closed and open system dynamics, in realistic numerical experiments incorporating single shot measurements, arbitrary Hilbert space truncations and uncertainty in Hamiltonian parameters. Also, the learned Hamiltonian can be leveraged by existing control methods like GRAPE for further gradient-based optimization with the controllers found by RL as initializations. Our algorithm that we apply on nitrogen vacancy (NV) centers and transmons in this paper is well suited for controlling partially characterised one and two qubit systems

    Erratum : Anyon braiding on a fractal lattice with a local Hamiltonian (Physical Review A (2022) 105 (L021302) DOI: 10.1103/PhysRevA.105.L021302)

    Get PDF
    There is a growing interest in searching for topology in fractal dimensions with the aim of finding different properties and advantages compared to the integer dimensional case. Here, we construct a local Hamiltonian on a fractal lattice whose ground state exhibits topological braiding properties. The fractal lattice is obtained from a second generation Sierpinski carpet with Hausdorff dimension 1.89. We use local potentials to trap and exchange anyons in the model, and the numerically obtained results for the exchange statistics of the anyons are close to the ideal statistics for quasiholes in a bosonic Laughlin state at half filling. For the considered system size, the energy gap is about three times larger for the fractal lattice than for a two-dimensional square lattice, and we find that the braiding results obtained on the fractal lattice are more robust against disorder. We propose a scheme to implement both fractal lattices and our proposed local Hamiltonian with ultracold atoms in optical lattices

    Anyon braiding on a fractal lattice with a local Hamiltonian

    Get PDF
    There is a growing interest in searching for topology in fractal dimensions with the aim of finding different properties and advantages compared to the integer dimensional case. Here we construct a local Hamiltonian on a fractal lattice whose ground state exhibits topological braiding properties. The fractal lattice is obtained from a second-generation Sierpinski carpet with Hausdorff dimension 1.89. We use local potentials to trap and exchange anyons in the model, and the numerically obtained results for the exchange statistics of the anyons are close to the ideal statistics for quasiholes in a bosonic Laughlin state at half filling. For the considered system size, the energy gap is about three times larger for the fractal lattice than for a two-dimensional square lattice, and we find that the braiding results obtained on the fractal lattice are more robust against disorder. We propose a scheme to implement both fractal lattices and our proposed local Hamiltonian with ultracold atoms in optical lattices
    corecore